Proposed Interim Levee Design Criteria for Urban and Urbanizing Area State-federal Project Levees

1. Definitions

- Accreditation means recognition by FEMA that a levee provides protection for the base flood (100-year) event, based on certification provided by a civil engineer or the Corps.
- Assurance means the probability of non-exceedance.
- Board means the Central Valley Flood Protection Board (formerly the Reclamation Board).
- Central Valley Flood Protection Plan means a strategic plan for reducing flood risks in the Central Valley that is to be completed by DWR and accepted by the Board by July 1, 2012 (Water Code § 9612(b)). This plan is to be updated every five years thereafter (Water Code § 9612(e)). The details of the plan are defined in recently passed State legislation (Senate Bill 5).
- Comprehensive Study means the 2002 Sacramento-San Joaquin River Basins Comprehensive Study. This study, lead by the Corps, provided estimates of 100-year and 200-year expected water surface elevations using various scenarios or sets of assumptions regarding whether and when upstream levees fail. One set of assumptions, which is the set assumed in this paper, had levees upstream of the area of interest act as weirs and allow overtopping flows without levee failure. This scenario is believed to be the one advocated/required by FEMA in its Base Flood certifications and to also be recommended by the Corps for levee design.
- Corps means the United States Army Corps of Engineers.
- Corps' R&U approach means the analysis of flood hazard and consequence in
 which the uncertainty of contributing factors is accounted for explicitly—especially
 uncertainty in hydrologic and hydraulic inputs and in levee performance. The R&U
 procedures considered herein are those described in the Corps' EM 1110-2-1619
 and included in the Corps' HEC-FDA software application.
- Design Water Surface Elevation (DWSE) means the stage or water level used in deterministic analyses such as the geotechnical, structural stability, and seepage analyses.
- Developed Area means the same as set forth in Section 59.1 of Title 44 of the Code of Federal Regulations.

- DWR means the California Department of Water Resources.
- Early Implementation Program means the DWR program that funds critical flood
 risk reduction projects that will be initiated in advance of the Central Valley Flood
 Protection Plan. These projects represent "no regrets" types of projects that
 would be consistent with any strategic plan that would be developed over the next
 several years.
- Expected Water Surface Elevation means the most likely, or 50% assurance level, stage or stream water level associated with a specific flood event (e.g., 100-year or 200-year flood).
- Facilities of the State Plan of Flood Control means the levees, weirs, channels, and other features of the federal and State authorized flood control facilities located in the Sacramento and San Joaquin River drainage basin for which the Board or DWR has given the assurances of nonfederal cooperation to the United States required for the project, and those facilities identified in Section 8361 of the Water Code (Public Resources Code § 5096.805(e)).
- FEMA means the Federal Emergency Management Agency.
- Freeboard means the height of the physical top of levee above the expected water surface elevation.
- Hydraulic Top of Levee means the lower of either: (1) the expected water surface elevation plus 3 feet, or (2) the physical top of levee (or the water surface profile that matches the physical top of the levee at its lowest point).
- Non-urbanizing Area means an area that does not qualify as being an urban area or an urbanizing area.
- Sacramento-San Joaquin Valley means any lands in the bed or along or near the banks of the Sacramento River or San Joaquin River, or any of their tributaries or connected therewith, or upon any land adjacent thereto, or within any of the overflow basins thereof, or upon any land susceptible to overflow there from. The Sacramento-San Joaquin Valley does not include lands lying within the Tulare Lake Basin, including the Kings River (Government Code § 65007(g)).
- State means the State of California.
- State-federal Project Levees means the levees in the Central Valley that are part of the facilities of the State Plan of Flood Control.
- Urban Area means a developed area in the Sacramento-San Joaquin Valley in which there are 10,000 residents or more (Government Code § 65007(i)).

 Urbanizing Area means a developed area or an area outside a developed area in the Sacramento-San Joaquin Valley that is planned or anticipated to have 10,000 residents or more within the next 10 years (Government Code § 65007(j)).

Background

Except for some Sacramento Valley levee construction early in the 20th century by the Board and the bypass levees constructed by DWR in the 1960's on the San Joaquin River, the State has never built or improved State-federal project levees in the Central Valley, except by partnering with the Corps. In these partnerships the Corps set the design standard and constructed the levees accordingly. For the first time since the 1960's, the State is now in the lead in performing (or providing funding for local agencies to perform) new levee construction and improvements to existing levees. It is highly desirable to follow the Corps' design standards to provide consistency in system improvements, comply with existing standards, and to facilitate federal crediting. However, the Corps' levee design standards are evolving and not completely established at this time.

Floodplain maps throughout the nation are being updated by FEMA under its Map Modernization Program pursuant to the procedures contained in Procedure Memoranda 34 and 43, issued in August 2005 and September 2006, respectively. These procedures require strong evidence of geotechnical and maintenance adequacy of levees for the base flood in order to maintain their current accreditation by FEMA. State-federal project levees in the Central Valley are being evaluated for geotechnical adequacy by DWR. The evaluations will be used to support planning studies and decisions, the design of repairs and improvements, and floodplain mapping studies. Central Valley communities desire to maintain, or regain at the earliest opportunity, accreditation of the levees affecting their communities—thereby allowing urban growth to continue and flood insurance to be optional instead of mandatory. In addition to FEMA's requirements, urban areas will be required to have 200-year protection by 2025 in order to continue development in the floodplain. Consequently, an early goal of most Central Valley communities is to provide FEMA-level protection as an important milestone on the way toward achieving 200-year protection.

In designing and certifying/accrediting levees there are two commonly used approaches:

The FEMA approach—used by most civil engineers to certify levees for accreditation by FEMA, is a deterministic design approach based on the expected water surface elevation for a given flood frequency event. The levee must then be analyzed for stability and seepage based on this water surface and a minimum amount of freeboard (typically three feet) provided above this water surface elevation. As little as two feet of freeboard may be allowed if the uncertainty in stage is characterized and justifies less than three feet of freeboard. Except for the last 10–15 years, the Corps typically used this deterministic approach. In recent years the Corps has been developing a semi-

probabilistic approach and has been working with FEMA to get FEMA to abandon its deterministic approach in favor of using the Corps' new approach.

The Corps' approach—used by the Corps and a limited number of other civil engineers, is a combined probabilistic and deterministic design approach that utilizes conditional risk and uncertainty-based water surface elevations for performing a deterministic geotechnical levee design. The Corps' procedure for design and certification, as applied for the Natomas AR Zone determination in early 2008, is clear on many points, requiring that the seepage and slope stability analyses be performed using either the 90% assurance water surface elevation if 3 feet of freeboard exists relative to the expected (50% assurance) water surface elevation, or the 95% assurance water surface elevation if less than 3 feet of freeboard is available (but in no case is less than 2 feet of freeboard allowed). However, additional specificity is needed because the Corps has not yet presented: (1) guidance on whether and when upstream levees fail in calculating the risk and uncertainty-based water surface elevations, (2) guidance on levee design with different requirements for levee slope stability and seepage between urban and non-urbanizing levees, (3) guidance on whether and how a check is performed to ensure that failure will occur from overtopping rather than from seepage or slope instability when design is exceeded, or (4) the rationale for using the 95% assurance water surface for slope stability and seepage analyses when less than 3 feet of freeboard is provided. Furthermore, the Corps has been trying to develop a new risk-based geotechnical analysis method to replace the deterministic geotechnical analysis method contained in Corps guidance documents, including EM 1110-2-1913, ETL 1110-2-569, and ETL 1110-2-570. But the state of practice is years away from developing a risk-based geotechnical approach for levee design.

Because a true probabilistic approach would consider and quantify all of the important uncertainties influencing the Design Water Surface Elevation (DWSE), the Corps' approach to date in the Central Valley is more properly characterized as a semiprobabilistic or conditional probabilistic approach. Some of the factors that can be assigned uncertainty functions in a probabilistic analysis include rainfall, storm centerings, climate change, routing factors, reservoir storage, reservoir operations, hydraulics, topography, flood fighting capability, and levee fragility (which includes many uncertainties such as permeability, soil strength, erosion resistance, density, and homogeneity of soil properties). To make the analyses manageable, many simplifying assumptions may be made (and were made in developing the hydrology and hydraulics for the Comprehensive Study). In some cases, the simplifying assumptions are intended to introduce conservatism (e.g., the most severe storm centerings are selected for any given levee being evaluated). In other cases, the assumptions may be made for policy reasons (e.g., assume upstream levees do not fail to allow robust maintenance programs for the levee system and eliminate any reliance on upstream levee failures). The Corps' approach is very flexible and can utilize as few or as many simplifying assumptions as the user desires. However, the current tendency is for the Corps to make some of the simplifying assumptions lean toward being very conservative. The result is that the Corps' approach is a mixture of probabilistic and conservative deterministic approaches that, for infrequent flood events, results in water surface

elevations with less likelihood of being exceeded than stated (i.e., a 90% assurance water surface elevation for a 200-year event actually has much less than a 10% chance of being exceeded). This is also true for the FEMA approach, since some conservative assumptions are employed in developing the expected water surface elevation.

Historically, most of the levee failures in the Central Valley have been caused by slope instability or seepage (including underseepage). Such failures tend to occur rapidly and with little or no warning—leaving little opportunity for evacuation prior to flooding. On the other hand, failures caused by levee overtopping are foreseeable and the levee failures tend to progress more slowly, and in some cases, can be prevented through aggressive flood fighting. Failures from overtopping provide much better opportunity to successfully evacuate the threatened area and to take steps to minimize damage to personal property. Consequently, the Corps has begun considering new levee design criteria that require factors of safety for seepage and slope stability in excess of 1.0 for water at the physical top of the levee. The Corps has not yet established the minimum factors of safety or the definition of the physical top of levee, or evaluated the costeffectiveness of this requirement and justified it in an economic analysis. Because it is primarily a life-saving and injury-reducing criterion, it may not be possible to justify it economically. Nevertheless, DWR supports this approach for levees that protect urban and urbanizing areas as a reasonable requirement for protecting life and personal property.

3. Assumptions and Considerations

- Many communities in the Central Valley protected by State-federal project levees will need to demonstrate within the next two years that the levees provide at least 100-year (1% annual chance) flood protection, using the 100-year expected water surface elevation to check for freeboard and geotechnical adequacy. Without documentation of this, FEMA will quite likely map these communities into the FEMA 100-year floodplain and require mandatory flood insurance and building restrictions within the next three years.
- Both State policy and recently enacted State legislation (Senate Bill 5) call for 200-year (0.5% annual chance) flood protection to be the minimum level of protection for urban and urbanizing areas in the Central Valley. Senate Bill 5 requires that the 200-year protection be consistent with criteria used or developed by DWR. Senate Bill 5 sets a target date of 2025 for all urban and urbanizing areas protected by State-federal project levees to achieve 200-year flood protection, and calls for building limitations after 2015 if adequate progress towards achieving this standard is not met.
- The citizens of California passed two bond measures on November 6, 2006 that provide \$4.9 billion of bond funds for reducing the flood risk in California. Over the next 10 years, approximately \$2 billion of State bond funds is expected to be spent for improving urban flood protection in the Central Valley. Currently, many urban

areas in the Central Valley are seeking to qualify for funding under the Early Implementation Program.

- Both the Corps and FEMA currently are in the process of revising their flood protection criteria. At this point in time, neither agency is able to provide definitive criteria for the design of levee systems that meet the needs of the State. Further, the Corps' R&U approach requires new risk analyses that can be difficult and time consuming to develop. Accordingly, to avoid delays in providing urgently needed flood protection, the State needs to step forward to provide interim levee design criteria.
- Local agencies seeking only to maintain or achieve FEMA 100-year protection are under no obligation to use the criteria set forth below, since they can submit their certification packages directly to FEMA. However, DWR is required by SB 5 to develop criteria for 200-year protection and the principles and considerations discussed below provide local agencies notice of the intent of DWR to develop criteria for 200-year protection that are not presently provided by FEMA.
- In the absence of clear guidance from the federal government on some levee design considerations, the State needs to provide interim guidance and criteria for design water surface elevations and levee design that will be used for:
 - Evaluations of State-federal project levees in urban and urbanizing areas
 - Evaluations of urban and urbanizing area levees that are not part of the Statefederal system
 - Guidance for urban and urbanizing area levee designs to be initiated/completed in the near future
 - Eligibility criteria for urban Early Implementation Program grant funding
 - Assisting local agencies in achieving FEMA 100-year protection
 - Assisting local agencies in achieving 200-year protection
 - Planning studies, such as the Central Valley Flood Protection Plan
- Seismic performance of levee systems has generally been ignored in the past, except for levees with a high likelihood of having coincident high water and earthquake loading, such as many levees in the Delta. More current thinking is that levees which infrequently experience loading from high water should be evaluated for seismic stability using typical water surface elevations and addressing flood risk with emergency response, interim and long-term repairs following the earthquake, and/or seismic remediation prior to the earthquake.
- Except for criteria specifically provided in this interim document, the guidance for levee design provided in the Corps' EM 1110-2-1913 and other Corps guidance documents is considered to be applicable.

In calculating the factor of safety for underseepage, the following equations apply:

$$FS = i_c/i_e$$

$$i_c = (\gamma_s - \gamma_w)/\gamma_w$$

where:

FS = Factor of Safety i_c = critical gradient i_e = exit gradient

 y_s = saturated unit weight of soil y_w = unit weight of water (62.4 pcf)

4. Design Principles

- To the extent applicable, the FEMA approach is considered acceptable. However, the FEMA approach is not explicit in some of its requirements and does not consider the consequences of failure in an urban area or the failure mode of the levee for events that exceed design.
- To the extent applicable, the Corps' approach is considered acceptable. However, the conditional risk and uncertainty-based design procedure utilized by the Corps is evolving and some aspects of it are unclear at this time. Most aspects of the approach can be utilized by the State and local agencies as a basis of design, with some modifications and clarifications.
- Whichever approach is used, it needs to be acceptable to FEMA for accreditation based on a certification from a civil engineer. Since the Corps' approach would allow some levees to be designed with less than three feet of freeboard and FEMA may accredit levees with less than three feet of freeboard if a civil engineer provides sufficient justification, with analysis of stage uncertainty, either approach should be acceptable for accreditation by FEMA. In other words, an analysis that follows a modified Corps approach with less than three feet, but at least two feet, of freeboard should be acceptable to FEMA.
- Urban and urbanizing area levees are to be designed for a factor of safety greater than 1.0 (stable) for stages up to the hydraulic top of levee (e.g., 200-year expected water surface plus 3 feet) so that erosion from overtopping would be the expected mode of failure for extreme flood events. However, levees that are already built much higher than needed for 200-year protection should not have to be degraded or reinforced to ensure that failure from overtopping occurs prior to failure from slope instability or seepage.
- Urban and urbanizing area levee designs should assume that (1) other levees in the regional system and upstream of the area do not fail, (2) other levees in the region and upstream of the area will be restored to their authorized design

elevations, and (3) other urban and urbanizing levees in the region and upstream of the area will have 3 feet of freeboard for the 200-year event.

- Levee design criteria for slope stability, seepage, and underseepage should not be more stringent for levees that have less than three feet of freeboard than for levees that do have three feet of freeboard.
- Urban and urbanizing area levee designs should consider the potential for sea level rise and climate change to increase runoff and peak stages over those calculated using previous hydrology and hydraulics studies, considering the physical limitations of the regional flood protection system. A sensitivity analysis of increased streamflows can be useful in evaluating how high the DWSE should be raised.
- Seismic performance of urban and urbanizing area levees during 200-year ground motions should be considered in the selection of all levee repair and improvement alternatives. Repairs or improvements primarily for the purpose of seismic strengthening generally would not be justifiable for levees subject to only seasonal high water loading. If warranted, seismic remediation could occur prior to an earthquake and/or following the earthquake as part of an emergency response and remediation plan.
- Future changes to the interim design criteria will need to be carefully evaluated for potential impacts on levee repair and improvement projects that are underway or have been recently completed.

5. Proposed Interim Urban and Urbanizing Area Levee Design Criteria

A two-option approach is recommended for defining Design Water Surface Elevations and urban/urbanizing levee design criteria over the next two years. Local agencies would be able to choose either one of two approaches, summarized as follows:

- (1) A modified version of the FEMA approach: specifically, to perform geotechnical and structural analysis with conventional safety factors using the expected water surface elevation as the DWSE, calculated through a conventional deterministic hydraulic analysis that allows upstream levees to overtop and not fail. To ensure that the levee fails from overtopping (rather than slope instability or seepage) when design stage is exceeded, the Modified FEMA Approach requires a geotechnical analysis with reduced safety factors using a water surface set at the hydraulic top of levee. The physical top of levee would need to be at least three feet higher than the DWSE, or more if required for wave runup; or
- (2) A modified version of the Corps' approach: specifically, to perform geotechnical and structural analyses with conventional safety factors using

the 90% assurance water surface as the DWSE, calculated through a conditional R&U analysis that assumes non-urbanizing area levees will overtop and not fail and urban and urbanizing area levees will not overtop. To ensure that the levee fails from overtopping (rather than slope instability or seepage) when design stage is exceeded, the Modified Corps Approach requires a geotechnical analysis with reduced safety factors using a water surface set at the hydraulic top of levee. The physical top of levee would need to be at least 3 feet higher than the expected water surface elevation if the 90% assurance water surface elevation is used to set the physical top of levee, or higher if required for wave runup. The physical top of levee would need to be at least 2 feet higher than the expected water surface elevation if the 95% assurance water surface elevation is used to set the physical top of levee, or higher if required for wave runup.

In addition, under either approach local agencies would be allowed and encouraged to adjust the DWSE upward to account for relative unconservatism in the past hydrologic studies with respect to storm centerings and climate change—until new hydrology is developed for the Central Valley that is expected to be more conservative than the current hydrology. DWR will also provide guidance with respect to considering sea level rise in hydraulic models. The adjustment should be based on judgment and consideration of the physical limits of the upstream and nearby regional flood protection system.

The two approaches would be available for use until rescinded by DWR (expected to be no sooner than January 1, 2010).

The options would be as follows:

Option 1: Modified FEMA Approach

- Where available, use the updated 2002 Comprehensive Study information to determine the expected water surface elevation (2002 Comprehensive Study data may be used if it is not updated):
 - a. The hydraulic models are to use the following assumptions:
 - Upstream and downstream levees protecting an existing urban area or urbanizing area are not allowed to overtop, nor are they allowed to fail, except that overtopping without failure should be allowed for floods exceeding the 200-year flood.
 - ii. All upstream and downstream levees are to be modeled to incorporate a minimum crown elevation equal to the 1955/57 original Corps design profiles—this affects upstream non-urbanizing areas for the most part—all such levees are to be allowed to overtop, act as weirs, and not fail for floods up to and including the 200-year flood.

For larger floods, non-urbanizing levees would be allowed to fail from overtopping.

b. Based on judged potential for underestimating the design water surface elevations, add up to 1 foot to the results to account for the relative unconservatism in the 2002 Comprehensive Study hydrologic analyses (e.g., storm centerings and climate change). Once it is available, the new updated hydrology and hydraulic modeling for the Central Valley, incorporating sea level rise and climate change considerations, will eliminate the need to consider adding height to the DWSE.

This modified Comprehensive Study expected water surface elevation, plus up to an additional one foot, becomes the Design Water Surface Elevation (DWSE). This approach would be used for both the 100-year and the 200-year flood events.

In some cases, where hydrologic or hydraulic information is non-existent or out of date, it may be necessary to develop new hydrologic and/or hydraulic data.

- 2. The levee crown elevation must be no lower than the DWSE plus a minimum of three feet, or higher, to account for wave runup—specific wind-wave analyses need to be completed.
- 3. Landside slope stability analyses are to use appropriate phreatic surfaces based on the DWSE—with a minimum factor of safety of 1.4 for failure surfaces that intersect the levee crown. The steady-state phreatic surface is generally considered to be appropriate, but a lower phreatic surface may be justified depending on the duration of the design hydrograph and the composition and dimensions of the levee. For urban and urbanizing areas, a minimum factor of safety of 1.3 is also required for an appropriate phreatic surface corresponding to the water surface set at the hydraulic top of levee. If the phreatic line corresponding to the DWSE emerges through erosive soil on the landside levee slope, then remediation will be required to prevent unraveling and progressive slope failure.
- 4. The underseepage exit gradient is required to be 0.5 or less at the landside levee toe using steady-state seepage analyses at the DWSE. For soils in the foundation top stratum with saturated unit weights less than 112 pcf, a minimum underseepage factor of safety of 1.6 is required at the landside levee toe.
- 5. For urban and urbanizing areas, the underseepage exit gradient is required to be 0.6 or less at the levee toe using steady-state seepage analyses for water surfaces set at the hydraulic top of levee. For soils in the foundation top stratum with saturated unit weights less than 112 pcf, a minimum seepage

- factor of safety of 1.3 is required at the landside levee toe for seepage analyses using water surfaces set at the hydraulic top of levee.
- 6. For urban and urbanizing areas, the underseepage exit gradient is required to be 0.8 or less at the toe of a seepage berm less than 300 feet wide using steady-state analysis for a water surface set at the hydraulic top of levee. For soils in the foundation top stratum with saturated unit weights less than 112 pcf, a minimum underseepage factor of safety of 1.0 is required at the toe of a seepage berm less than 300 feet wide using a water surface set at the hydraulic top of levee.
- For urban and urbanizing areas, an analysis of seismic vulnerability of the 7. levee system from 200-year ground motions is required, using typical summer and winter water surface elevations. For levees subject to seasonal high water that are planned for repair or improvement and that are also found to be vulnerable to seismic damage, the repair or improvement alternative that is most resistant to seismic damage and/or easily and economically repaired following an earthquake should be selected over other cost-comparable alternatives (e.g., a berm is preferable to a cost-comparable slurry wall). If seismic damage is expected after all 200-year flood improvements are in place, a post-earthquake remediation plan will be required to quickly restore a modest level of protection to the area (no less than 10-year flood protection). To the extent that seismic damage to the levee system would be so significant and widespread that it would be infeasible to restore a modest level of protection within a few months, seismic strengthening may be required for 200-year certification. Levees subject to frequent high water, such as many levees in the Delta, would need seismic stability sufficient to maintain a modest level of flood protection during and immediately after the earthquake.

Note: Underseepage exit gradient and factor of safety criteria also apply within a ditch or depression near the levee toe or seepage berm toe.

Option 2: Modified Corps Approach

- 1. Where available, use updated 2002 Comprehensive Study information to perform the conditional risk and uncertainty analysis for hydrology and hydraulics (2002 Comprehensive Study data may be used if it is not updated):
 - a. The hydraulic models are to use the following assumptions:
 - i. Upstream and downstream levees protecting an existing urban area or urbanizing area are not allowed to overtop, nor should they be allowed to fail, except that overtopping without failure is allowed for floods exceeding the 200-year flood.

- ii. All upstream and downstream levees are to be modeled to incorporate a minimum crown elevation equal to the 1955/57 original Corps design profiles—this affects upstream non-urbanizing areas for the most part—all such levees are to be allowed to overtop, act as weirs, and not fail for floods up to and including the 200-year flood. For larger floods, non-urbanizing levees would be allowed to fail from overtopping.
- b. Determine the stage-frequency relationship (expected water surface elevation) and the corresponding 90% and 95% assurance water surface elevations for the design event. Any methodology that meets the Corps standards for determining the 90% and 95% assurance elevations may be used. An example of an approved method for determining the assurance levels would be the utilization of the computer program HEC-FDA.
- c. Based on judged potential for underestimating the design water surface elevations, add up to 1 foot to the results to account for the lack of uncertainty considerations in the 2002 Comprehensive Study hydrologic analyses (e.g., storm centerings and climate change). Once it is available, the new updated hydrology and hydraulic modeling for the Central Valley, incorporating sea level rise and climate change considerations, will eliminate the need to consider adding height to the DWSE.

The 90% assurance water surface elevation, plus up to an additional 1 foot, becomes the DWSE. This approach would be used for both the 100-year and the 200-year flood events.

For locations where the Comprehensive Study information is unavailable or superseded, use the best available hydrologic and hydraulic data and follow the same procedure as above. In some cases, where information is non-existent or out of date, it may be necessary to develop new hydrologic and/or hydraulic data.

- 2. The physical top of levee (levee crown elevation) must be no lower than the DWSE or 3 feet above the expected water surface elevation, whichever is higher, or higher for wave runup—specific wind-wave analyses need to be completed. A lower physical top of levee is allowed if it is both (1) at or above the 95% assurance water surface elevation, or higher for wave runup and (2) at least 2 feet above the expected water surface elevation, or higher as needed for wave runup.
- 3. Landside slope stability analyses are to use appropriate phreatic surfaces based on the DWSE—with a minimum factor of safety of 1.4 for failure

surfaces that intersect the levee crown. The steady-state phreatic surface is generally considered to be appropriate, but a lower phreatic surface may be justified depending on the duration of the design hydrograph and the composition and dimensions of the levee. For urban and urbanizing areas, a minimum factor of safety of 1.3 is also required for an appropriate phreatic surface corresponding to the water surface set at the hydraulic top of levee. If the phreatic line corresponding to the DWSE emerges through erosive soil on the landside levee slope, then remediation will be required to prevent unraveling and progressive slope failure.

- 4. The underseepage exit gradient is required to be 0.5 or less at the landside levee toe using steady-state seepage analyses at the DWSE. For soils in the foundation top stratum with saturated unit weights less than 112 pcf, a minimum underseepage factor of safety of 1.6 is required at the landside levee toe.
- 5. For urban and urbanizing areas, the underseepage exit gradient is required to be 0.6 or less at the levee toe using steady-state seepage analyses for water surfaces set at the hydraulic top of levee. For soils in the foundation top stratum with saturated unit weights less than 112 pcf, a minimum seepage factor of safety of 1.3 is required at the landside levee toe for seepage analysis using a water surface set at the hydraulic top of levee.
- 6. For urban and urbanizing areas, the underseepage exit gradient is required to be 0.8 or less at the toe of a seepage berm less than 300 feet wide using steady-state analysis for a water surface set at the hydraulic top of levee. For soils in the foundation top stratum with saturated unit weights less than 112 pcf, a minimum underseepage factor of safety of 1.0 is required at the toe of a seepage berm less than 300 feet wide using a water surface set at the hydraulic top of levee.
- 7. For urban and urbanizing areas, an analysis of seismic vulnerability of the levee system from 200-year ground motions is required, using typical summer and winter water surface elevations. For levees subject to seasonal high water that are planned for repair or improvement and that are also found to be vulnerable to seismic damage, the repair or improvement alternative that is most resistant to seismic damage and/or easily and economically repaired following an earthquake should be selected over other cost-comparable alternatives (e.g., a berm is preferable to a cost-comparable slurry wall). If seismic damage is expected after all 200-year flood improvements are in place, a post-earthquake remediation plan will be required to quickly restore a modest level of protection to the area (no less than 10-year flood protection). To the extent that seismic damage to the levee system would be so significant and widespread that it would be infeasible to restore a modest level of protection within a few months, seismic strengthening may be required for 200-year certification. Levees subject to frequent high water,

such as many levees in the Delta, would need seismic stability sufficient to maintain a modest level of flood protection during and immediately after the earthquake.

Note: Underseepage exit gradient and factor of safety criteria also apply within a ditch or depression near the levee toe or seepage berm toe.

6. Achievements and Considerations

- The proposal allows local agencies to choose between two well defined approaches that are similar to the two existing federal approaches, but modified to make them more specific and designed to avoid "brittle" levee failures.
- The simpler approach, the Modified FEMA Approach, is similar to the approach employed by most civil engineers.
- The Modified Corps Approach, the more complex of the two approaches, uses a higher water surface elevation for geotechnical design, and may require more freeboard, and therefore will tend to result in a more robust levee design. In some cases (where the 95% assurance water surface elevation is used) it may result in less freeboard than would normally be required by FEMA. In some cases, the Modified Corps Approach uses a lower water surface for geotechnical design than the Corps would use (90% assurance as compared to 95% assurance, respectively).
- Because FEMA appears to be moving away from deterministic design and has proposed a 10-year transition toward the Corps' approach, local agencies that choose the Modified FEMA Approach may find that they will need to make additional improvements in the future in order to sustain the level of protection to which they are designing.
- Because the Corps' approach is evolving, local agencies that choose to follow the Modified Corps Approach may ultimately find that they will need to make additional improvements in the future in order to sustain the level of protection to which they are designing, as measured by the Corps' procedures. They are less likely to need to make additional improvements than if they followed the Modified FEMA Approach.
- Because new hydrology and hydraulic studies are being developed over the next few years, and they will consider additional storm centerings, sea level rise, and climate change, any design based on current hydrology and hydraulics is likely to provide less protection than intended. Therefore, an increase in the design water surface elevation of up to one foot is allowed and encouraged, based on judgment.

- The proposal allows use of the widely available 2002 Sacramento-San Joaquin River Basins Comprehensive Study model with conservative modifications.
- The proposal establishes minimum criteria for slope stability, seepage, and underseepage for water levels set at the hydraulic top of the levee that, except for levees with excessive freeboard, should prevent the levee from failing from any of these mechanisms—forcing it to fail from overtopping. This is desirable in order to minimize unpredicted levee failures and loss of life and is an additional consideration absent from FEMA's approach and not well defined in the Corps' approach.
- The use of a lower factor of safety for hydraulic top of levee water surfaces (e.g., underseepage exit gradient of 0.6 instead of 0.5) is not as conservative as some Corps engineers may advocate and more conservative than others may advocate. However, it still maintains an appropriate factor of safety for this extreme loading event and is an additional safety check not required by FEMA and not yet fully established by the Corps.
- This proposal provides guidance regarding seismic design of levees, how to incorporate seismic considerations in selection of levee repair and improvement alternatives, and how to address unremediated seismic performance problems.
- This interim approach would last until rescinded by DWR (expected to be no sooner than January 1, 2010). After this date, DWR should have new, updated hydrology and hydraulics information and modeling that will better define appropriate design water levels. Hopefully by this date, both the Corps and FEMA will have agreed with the State on appropriate design criteria.

7. Proposed Circulation

It is proposed that this draft be circulated with Corps, FEMA, and local agencies to continue discussions on appropriate design criteria and to allow designs to proceed expeditiously using either option.